76 research outputs found

    Apolipoprotein E decreases tau kinases and phospho-tau levels in primary neurons

    Get PDF
    Apolipoprotein E (apoE) receptors act as signaling molecules in neurons, altering phosphorylation of numerous proteins after extracellular ligand binding and affecting neurite outgrowth, synapse formation, and neuronal migration. Since apoE is important in the pathogenesis of Alzheimer's disease (AD), we tested whether apoE treatment of neurons affected molecules important to phosphorylation of tau, such as GSK 3β, P35, and CDK5, and the phosphorylation of tau itself. Treatment of primary neurons with 2 uM apoE (or an apoE-derived peptide) decreased levels of phospho-GSK 3β, P35 and CDK5, and decreased levels of phosphorylated forms of tau. A lower concentration of apoE (100 nM) had no effect on these molecules. The alteration of tau phosphorylation by apoE was blocked by an inhibitor of the low-density lipoprotein receptor family, demonstrating the effects were due to receptor interactions. These results demonstrate that apoE affects several downstream signaling cascades in neurons: decreased tau kinases phosphorylation and inhibition of tau phosphorylation at Thr171 and Ser202/Thr205 epitopes. We conclude that apoE can alter levels of tau kinases and phospho-tau epitopes, potentially affecting tau neuropathological changes seen in AD brains

    The generation and function of soluble apoE receptors in the CNS

    Get PDF
    More than a decade has passed since apolipoprotein E4 (APOE-ε4) was identified as a primary risk factor for Alzheimer 's disease (AD), yet researchers are even now struggling to understand how the apolipoprotein system integrates into the puzzle of AD etiology. The specific pathological actions of apoE4, methods of modulating apolipoprotein E4-associated risk, and possible roles of apoE in normal synaptic function are still being debated. These critical questions will never be fully answered without a complete understanding of the life cycle of the apolipoprotein receptors that mediate the uptake, signaling, and degradation of apoE. The present review will focus on apoE receptors as modulators of apoE actions and, in particular, explore the functions of soluble apoE receptors, a field almost entirely overlooked until now

    Soluble apoE/Aβ Complex: Mechanism and Therapeutic target for APOE4-induced AD Risk

    Get PDF
    The APOE4 allele of apolipoprotein E (apoE) is the greatest genetic risk factor for Alzheimer\u27s disease (AD) compared to APOE2 and APOE3. Amyloid-β (Aβ), particularly in a soluble oligomeric form (oAβ), is considered a proximal cause of neurodegeneration in AD. Emerging data indicate that levels of soluble oAβ are increased with APOE4, providing a potential mechanism of APOE4-induced AD risk. However, the pathway(s) by which apoE4 may increase oAβ levels are unclear and the subject of continued inquiry. In this editorial review, we present the hypothesis that apoE isoform-specific interactions with Aβ, namely apoE/Aβ complex, modulate Aβ levels. Specifically, we propose that compared to apoE3, apoE4-containing lipoproteins are less lipidated, leading to less stable apoE4/Aβ complexes, resulting in reduced apoE4/Aβ levels and increased accumulation, particularly of oAβ. Evidence that support or counter this argument, as well as the therapeutic significance of this pathway to neurodegeneration, are discussed

    Genetics Ignite Focus on Microglial Inflammation in Alzheimer\u27s Disease

    Get PDF
    In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer\u27s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD

    FE65 as a link between VLDLR and APP to regulate their trafficking and processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies found that FE65, a cytoplasmic adaptor protein, interacts with APP and LRP1, altering the trafficking and processing of APP. We have previously shown that FE65 interacts with the ApoE receptor, ApoER2, altering its trafficking and processing. Interestingly, it has been shown that FE65 can act as a linker between APP and LRP1 or ApoER2. In the present study, we tested whether FE65 can interact with another ApoE receptor, VLDLR, thereby altering its trafficking and processing, and whether FE65 can serve as a linker between APP and VLDLR.</p> <p>Results</p> <p>We found that FE65 interacted with VLDLR using GST pull-down and co-immunoprecipitation assays in COS7 cells and in brain lysates. This interaction occurs via the PTB1 domain of FE65. Co-transfection with FE65 and full length VLDLR increased secreted VLDLR (sVLDLR); however, the levels of VLDLR C-terminal fragment (CTF) were undetectable as a result of proteasomal degradation. Additionally, FE65 increased cell surface levels of VLDLR. Moreover, we identified a novel complex between VLDLR and APP, which altered trafficking and processing of both proteins. Furthermore, immunoprecipitation results demonstrated that the presence of FE65 increased the interaction between APP and VLDLR <it>in vitro </it>and <it>in vivo</it>.</p> <p>Conclusions</p> <p>These data suggest that FE65 can regulate VLDLR trafficking and processing. Additionally, the interaction between VLDLR and APP altered both protein's trafficking and processing. Finally, our data suggest that FE65 serves as a link between VLDLR and APP. This novel interaction adds to a growing body of literature indicating trimeric complexes with various ApoE Receptors and APP.</p

    Therapeutic versus neuroinflammatory effects of passive immunization is dependent on Abeta/amyloid burden in a transgenic mouse model of Alzheimer's disease

    Get PDF
    Abstract Background Passive immunization with antibodies directed to A&#946; decreases brain A&#946;/amyloid burden and preserves memory in transgenic mouse models of Alzheimer's disease (AD). This therapeutic strategy is under intense scrutiny in clinical studies, but its application is limited by neuroinflammatory side effects (autoimmune encephalitis and vasogenic edema). Methods We intravenously administered the monoclonal A&#946; protofibril antibody PFA1 to aged (22 month) male and female 3 &#215; tg AD mice with intermediate or advanced AD-like neuropathologies, respectively, and measured brain and serum A&#946; and CNS cytokine levels. We also examined 17 month old 3 &#215; tg AD female mice with intermediate pathology to determine the effect of amyloid burden on responses to passive immunization. Results The 22 month old male mice immunized with PFA1 had decreased brain A&#946;, increased serum A&#946;, and no change in CNS cytokine levels. In contrast, 22 month old immunized female mice revealed no change in brain A&#946;, decreased serum A&#946;, and increased CNS cytokine levels. Identical experiments in younger (17 month old) female 3 &#215; tg AD mice with intermediate AD-like neuropathologies revealed a trend towards decreased brain A&#946; and increased serum A&#946; accompanied by a decrease in CNS MCP-1. Conclusions These data suggest that passive immunization with PFA1 in 3 &#215; tg AD mice with intermediate disease burden, regardless of sex, is effective in mediating potentially therapeutic effects such as lowering brain A&#946;. In contrast, passive immunization of mice with a more advanced amyloid burden may result in potentially adverse effects (encephalitis and vasogenic edema) mediated by certain proinflammatory cytokines.http://deepblue.lib.umich.edu/bitstream/2027.42/78261/1/1742-2094-7-57.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78261/2/1742-2094-7-57.pdfPeer Reviewe

    Protective Effects of APOE ε2 Genotype on Cognition in Older Breast Cancer Survivors: The Thinking and Living With Cancer Study

    Get PDF
    Background: Cancer-related cognitive decline (CRCD) has been linked to apolipoprotein E (APOE) gene ε4 polymorphisms. APOE ε4 polymorphisms are also the strongest genetic risk for late-onset Alzheimer disease (AD), whereas ε2 polymorphisms protect against AD. However, the effects of ε2 polymorphisms on CRCD have not been evaluated. Methods: We evaluated nonmetastatic breast cancer survivors (n = 427) and matched noncancer controls (n = 407) ages 60-98 years assessed presystemic therapy from August 2010 to December 2017 with annual follow-up to 24 months. Neuropsychological assessment measured attention, processing speed, executive function, and learning and memory. Linear mixed-effects models tested the effects of having an ε2 allele (vs none) on longitudinal cognitive domain z scores by treatment group (chemotherapy with or without hormonal therapy, hormonal therapy, and control) controlling for covariates; participants with ε2/ε4 genotype were excluded. Sensitivity analyses examined effects of other covariates and any ε4 positivity. Results: There was an interaction with genotype for attention, processing speed, and executive functioning domain scores (Beta = 0.32, 95% confidence interval = 0.00 to 0.65); the chemotherapy group with an ε2 allele had higher scores at baseline and maintained higher scores over time compared with those without an ε2 allele, and this protective effect was not seen for other groups. There was no effect of ε2 on learning and memory domain scores. Conclusions: APOE ε2 polymorphisms may protect against CRCD in older breast cancer survivors receiving chemotherapy. With replication, this information could be useful for survivorship care and informing future studies of possible links to AD and defining mechanisms of protection

    ApoE Receptor 2 Regulates Synapse and Dendritic Spine Formation

    Get PDF
    Apolipoprotein E receptor 2 (ApoEr2) is a postsynaptic protein involved in long-term potentiation (LTP), learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory.In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11α and PSD-95, affected synapse and dendritic spine formation. X11α decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density.These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11α and PSD-95

    An Active Site Aromatic Triad in Escherichia coli DNA Pol IV Coordinates Cell Survival and Mutagenesis in Different DNA Damaging Agents

    Get PDF
    DinB (DNA Pol IV) is a translesion (TLS) DNA polymerase, which inserts a nucleotide opposite an otherwise replication-stalling N2-dG lesion in vitro, and confers resistance to nitrofurazone (NFZ), a compound that forms these lesions in vivo. DinB is also known to be part of the cellular response to alkylation DNA damage. Yet it is not known if DinB active site residues, in addition to aminoacids involved in DNA synthesis, are critical in alkylation lesion bypass. It is also unclear which active site aminoacids, if any, might modulate DinB's bypass fidelity of distinct lesions. Here we report that along with the classical catalytic residues, an active site “aromatic triad”, namely residues F12, F13, and Y79, is critical for cell survival in the presence of the alkylating agent methyl methanesulfonate (MMS). Strains expressing dinB alleles with single point mutations in the aromatic triad survive poorly in MMS. Remarkably, these strains show fewer MMS- than NFZ-induced mutants, suggesting that the aromatic triad, in addition to its role in TLS, modulates DinB's accuracy in bypassing distinct lesions. The high bypass fidelity of prevalent alkylation lesions is evident even when the DinB active site performs error-prone NFZ-induced lesion bypass. The analyses carried out with the active site aromatic triad suggest that the DinB active site residues are poised to proficiently bypass distinctive DNA lesions, yet they are also malleable so that the accuracy of the bypass is lesion-dependent
    • …
    corecore